Structure of Multi-Stage Composite Genetic Algorithm (MSC-GA) and its performance

نویسندگان

  • Fachao Li
  • Lida Xu
  • Chenxia Jin
  • Hong Wang
چکیده

In view of the slowness and the locality of convergence for Simple Genetic Algorithm (SGA) in solving complex optimization problems, we propose an improved genetic algorithm named Multi-Stage Composite Genetic Algorithm (MSC-GA) through reducing the optimization-search range gradually, and the structure and implementation steps ofMSC-GA is also discussed. Then, we consider its global convergence under the elitist preserving strategy using the Markov chain theory and analyze its performance through three examples from different aspects. The results indicate that the new algorithm possesses several advantages such as better convergence and less chance of being trapped into premature states. As a result, it can be widely applied to many large-scale optimization problems which require higher accuracy. 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of a Mathematical Model for Logistic Network in a Multi-Stage Multi-Product Supply Chain Network and Developing a Metaheuristic Algorithm

Logistic network design is one of the most important strategic decisions in supply chain management that has recently attracted the attention of many researchers. Transportation network design is then one of the most important fields of logistic network. This study is concerned with designing a multi-stage and multi-product logistic network. At first, a mixed integer nonlinear programming model...

متن کامل

An improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling

Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial,...

متن کامل

A multi-objective genetic algorithm (MOGA) for hybrid flow shop scheduling problem with assembly operation

Scheduling for a two-stage production system is one of the most common problems in production management. In this production system, a number of products are produced and each product is assembled from a set of parts. The parts are produced in the first stage that is a fabrication stage and then they are assembled in the second stage that usually is an assembly stage. In this article, the first...

متن کامل

A Multi-Periodic Multi-Product Inventory Control Problem with Discount: GA Optimization Algorithm

In this article, a finite horizon, multi product and multi period economic order quantity like seasonal items is considered where demand rate is deterministic and known but variable in each period. The order quantities of items come in batch sizes and the end of the period order quantity and, consequently, demand of customers are zero. In addition, storage space is constrained and the problem...

متن کامل

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2011